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Abstract

Based on I.N.Vekua’s shell theory (approximation N = 1) for rectangular plate

and shallow shells a number of boundary value problems are effectively solved when

conditions of free support (antisymmetry conditions) and sliding jam (symmetry condi-

tions) are defined on the boundary of the domain or when on one part of the boundary

outline symmetry conditions are defined, while on the other antisymmetry conditions

are given. Both the classic case of Vekua shell theory and the case based on elastic

mix theory are considered. Using the method of separation of variables the mentioned

boundary value problems are reduced to the solution of an infinite system of linear

algebraic equations with a block diagonal matrix.

Key words and phrases: Plate, spherical and cylindrical shells, binary mix
theory, symmetry and anti-symmetry conditions.

AMS subject classification: 74k25, 74E30.

Introduction

The importance of analytical (exact) solutions in plate and shell theory is
well known. A number of publications are devoted to this problem [1], [2],
[3], [4], [5].

In the present paper we construct analytical solutions of elastic equilib-
rium problems for plates and shells according to I.N.Vekua [6]. Both the
classic case of Vekua shell theory and the case based on elastic mix theory
are considered.

1 Problem Statement

Firstly, we shall deal with the stress and strain state of a plate considered
in the Cartesian system of coordinates x1x2x3 occupying the domain Ω =
{0 < x1 < a1, 0 < x2 < a2, −h < x3 < h} where a1, a2, h are constant.
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Due to the fact that the main equations of zero order approximation using
Vekua technique for the classic case actually coincide with the equations of
the flat deformable state, we are not going to consider them in this paper.

In the case of the N = 1 order approximation the components of the
displacement vector have the following form

uj =
(0)
u j +

x3

h

(1)
u j ,

where

(0)
u j =

1
2h

h∫

−h

ujdxj ,
(1)
u j =

3
2h2

h∫

−h

x3ujdx3, j = 1, 2, 3.

On the boundary of the median surface of the plate the following con-
ditions are considered.

Symmetry conditions [7]

(k)
u α = 0, ∂α

(k)
u 3 = 0, ∂α

(k)
u 3−α = 0, xα = 0 xα = aα. (1.1)

Anti-symmetry conditions [7]

(k)
u 3−α = 0,

(k)
u 3 = 0, ∂α

(k)
u α = 0, xα = 0 xα = aα, α = 1, 2 k = 0, 1.

(1.2)

∂α =
∂

∂xα
.

Various types of mixed boundary conditions are considered when sym-
metry conditions are defined on some of the sides of the rectangle, while
anti-symmetry conditions are given for the other ones.

It should be noted that symmetry conditions (based on the classic three-
dimensional elasticity theory) imply that a normal component of the dis-
placement vector and tangential components of the stress are defined at the
boundary of the domain, while anti-symmetry conditions imply the oppo-
site, i.e. the normal component of the stress and the tangential components
of the displacement are defined at the boundary. It should be mentioned
that symmetry and anti-symmetry conditions allow a continuous extension
of the solution onto the domain specular with respect to the given one.

In our case the equations break up into two independent systems of

stretching- compression and bend, with the desired values
(0)
u 1,

(0)
u 2,

(1)
u 3

(1)
u 1,

(1)
u 2,

(0)
u 3, respectively. The given boundary conditions also break up in

a similar way.
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The elastic equilibrium of the plate with the corresponding boundary
conditions is described by the following system of differential equations.

Stretching-compression system





µ∆
(0)
u 1 + (λ + µ)∂1

(0)

θ +
λ

h
∂1

(1)
u 3 +

(0)

F 1 = 0,

µ∆
(0)
u 2 + (λ + µ)∂2

(0)

θ +
λ

h
∂2

(1)
u 3 +

(0)

F 2 = 0,

µ∆
(1)
u 3 − 3λ

h

(0)

θ −3(λ + 2µ)
h2

(1)
u 3 +

(1)

F 3 = 0.

(1.3)

Bend system





µ∆
(1)
u 1 + (λ + µ)∂1

(1)

θ −3µ

h
∂1

(0)
u 3 − 3µ

h2

(1)
u 1 +

(1)

F 1 = 0,

µ∆
(1)
u 2 + (λ + µ)∂2

(1)

θ −3µ

h
∂2

(0)
u 3 − 3µ

h2

(1)
u 2 +

(1)

F 2 = 0,

µ∆
(0)
u 3 +

µ

h

(1)

θ +
(0)

F 3 = 0,

(1.4)

where ∆ = ∂11 + ∂22 is a flat Laplacian,
(k)

θ = ∂1
(k)
u 1 + ∂2

(k)
u 2, k = 0, 1;

(k)

F j =
2k + 1

2π

h∫

−h

ΦjPk

(x3

h

)
dx3 +

2k + 1
2h

(
(+)
σ 1j − (−1)k(−)

σ 3j

)
.

Φj are components of volumetric forces, Pk

(x3

h

)
is Legendre’s polynomial

of the order k,
(±)
σ 3j = σ3j (x1, x2,±h) are stresses defined at the front

surfaces of the plate; λ and µ are Lame’s constants.

It can be easily seen that a certain class of boundary value problems for
a plane is considered. The solution of all these boundary value problems
will be considered for the case of boundary value problem (1.2), (1.3), (1.4),
i.e. when anti-symmetry conditions are defined on the outline of the plate.
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2 Solution of the problem for the plate

Arrange the functions
(k)

F j , j = 1, 2, 3; k = 0, 1 into the corresponding
trigonometric functions

(k)

F 1 =
∞∑

m=0

∞∑

n=1

(k)

F 1
mn cos

πmx1

a1
sin

πnx2

a2
,

(k)

F 2 =
∞∑

m=1

∞∑

n=0

(k)

F 2
mn sin

πmx1

a1
cos

πnx2

a2
,

(k)

F 3 =
∞∑

m=1

∞∑

n=1

(k)

F 3
mn sin

πmx1

a1
sin

πnx2

a2
, k = 0, 1,

(2.1)

where
(k)

F j
mn are Fourier coefficients of the functions

(k)

F 1,
(k)

F 2,
(k)

F 3.

The desired values
(k)
u 1,

(k)
u 2,

(k)
u 3 are represented as the following series

(k)
u 1 =

∞∑

m=0

∞∑

n=1

(k)
a mn cos

πmx1

a1
sin

πnx2

a2
,

(k)
u 2 =

∞∑

m=1

∞∑

n=0

(k)

b mn sin
πmx1

a1
cos

πnx2

a2
,

(k)
u 3 =

∞∑

m=1

∞∑

n=1

(k)
c mn sin

πmx1

a1
sin

πnx2

a2
, k = 0, 1,

(2.2)

where
(k)
a mn,

(k)

b mn,
(k)
c mn are the desired coefficients.

Substituting expressions (2.1), (2.2) into equation systems (1.3), (1.4)
and comparing the coefficients for the same trigonometric functions, we

obtain the following values for the coefficients
(k)
a 01,

(k)

b 10, k = 1, 2

(0)
a 01 =

a2
2

π2

1
µ

(0)

F 01,
(0)

b 10 =
a2

1

π2

1
µ

(0)

F 10,

(1)
a 01 =

a2
2h

2

π2h2 + 3a2
2

1
µ

(1)

F 01,
(1)

b 10 =
a2

1h
2

π2h2 + 3a2
1

1
µ

(1)

F 10.

For any fixed natural values of m and n we have the following systems of
equations.
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In the stretching-compression case




(λ + 2µ)π2m2

a2
1

+ µπ2n2

a2
2

(λ + µ)π2mn
a1a2

−λ
h

πm
a1

(λ + µ)π2mn
a1a2

(λ + 2µ)π2n2

a2
2

+ µπ2m2

a2
1

−λ
h

πn
a2

−3λπ
h

m
a1

−3λπ
h

n
a2

µπ2
(

m2

a2
1

+ n2

a2
2

)
+ 3(λ+2µ)

h2




×




(0)
a mn

(0)

b mn

(1)
c mn




=




(0)

F 1
mn

(0)

F 2
mn

(1)

F 3
mn




,

(2.3)
In the bend case




(λ + 2µ)π2m2

a2
1

+ µπ2n2

a2
2

+ 3µ
h2 (λ + µ)π2mn

a1a2

3µ
h

πm
a1

(λ + µ)π2mn
a1a2

(λ + 2µ)π2n2

a2
2

+ µπ2m2

a2
1

+ 3µ
h2

3µ
h

πn
a2

µ
h

πm
a1

µ
h

πn
a2

µπ2
(

m2

a2
1

+ n2

a2
2

)




×




(1)
a mn

(1)

b mn

(0)
c mn




=




(1)

F 1
mn

(1)

F 2
mn

(0)

F 3
mn




.

(2.4)
Denote the block matrix with arbitrary m and n by Dmn in the stretching-

compression case and by Qmn in the bend case.

det Dmn = µ2π4

(
m2

a2
1

+
n2

a2
2

)2 [
(λ + 2µ)π2

(
m2

a2
1

+
n2

a2
2

)
+

12
h2

(λ + µ)
]

,

(2.5)

det Qmn = µ2(λ + 2µ)π4

(
m2

a2
1

+
n2

a2
2

)[
π2

(
m2

a2
1

+
n2

a2
2

)
+

3
h2

)
]

. (2.6)
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As one can see from equalities (2.5) and (2.6), we have detDmn > 0,
detQmn > 0.

Hence the desired coefficients can be unambiguously defined for any m
and n.

Quite similarly problems can be solved in the case when the conditions
of symmetry and anti-symmetry are arbitrarily defined on the contour of
the plate.

3 Solution of the problem for spherical and cylin-
drical shells

Now consider the case of zero approximation of Vekua’s method for a
strongly sloping spherical shell and sloping cylindrical shell. The shells
are assumed to be rectangular in the plan. The solutions of the corre-
sponding boundary value problems are constructed quite similarly to those
of boundary value problems in the case of N = 1 approximation. Without
dwelling on the statement of boundary value problems for the mentioned
shells with anti-symmetry conditions on the contour we will just give ex-
pressions for the mn-th block of infinite block-diagonal matrices. Naturally,
in this case the solution of the mentioned problems is also reduced to the
infinite block-diagonal matrix.

In the case of strongly sloping spherical shell we have

Smn =




(λ + 2µ)π2 m2

a2
1

+ µπ2 n2

a2
2

(λ + µ)π2 m
a1

n
a2

−2λ+3µ
R π m

a1

(λ + µ)π2 m2

a2
1

n2

a2
2

(λ + 2µ)π2 n2

a2
2

+ µπ2 m2

a2
1

−2λ+3µ
R π n

a2

−2(λ+3µ)
R π m2

a2
1

−2(λ+3µ)
R π n

a2
µπ2

(
m2

a2
1

+ n2

a2
2

)




;

(3.1)
In the case of sloping cylindrical shell we have

Cmn=




(λ + 2µ)π2 m2

a2
1

+ µπ2 n2

a2
2

(λ + µ)π2 m
a1

n
a2

−λ
ρπ m

a1

(λ + µ)π2 m
a1

n
a2

(λ + 2µ)π2 m2

a2
1

+ µπ2 n2

a2
2

+ µ
ρ2 −λ+3µ

ρ π n
a2

−λ
ρπ m

a1
−λ+3µ

ρ π n
a2

µπ2
(

m2

a2
1

+ n2

a2
2

)
+ λ+2µ

ρ2




,

(3.2)
where R and ρ denote radii of median surfaces of the spherical and cylin-
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drical shells, respectively.

detSmn = µ2(λ+2µ)π4

(
m2

a2
1

+
n2

a2
2

)2 [
µπ2

(
m2

a2
1

+
n2

a2
2

)
− 2(λ + 3µ)(2λ + 3µ)

πR2(λ + 2µ)

]
.

Due to the expression detCmn (detCmn 6= 0) being somewhat cumber-
some we are not going to give it. On the basis of the strong sloping of the
shell and estimating some expressions containing λ and µ we can show that
detSmn differs from zero.

4 Solution of boundary value problems for plates
on the basis of binary mix theory

4.1. Problem statement. Let the above-mentioned plate occupy the
same domain Ω and consist of a mix of two isotropic hard materials. Con-
sider the corresponding boundary value problems for this case. As initial
equations, we will take a three-dimensional system of equations of a binary
mix version given in Green and Naghdi’s and Steel’s publication [8], [9].

In contrast to the classical theory, equilibrium equations and bound-
ary conditions will also be given here for the case of zero approximation of
Vekua’s method, which coincide with the equations of flat deformable state
of an infinitely long cylindrical body consisting of a binary mix. In the
two-component theory at every point occupied by the body two displace-
ment vectors and two tensors of deformations and stresses are considered,
corresponding to two components of the mix. The components of the dis-
placement vector u′j , u′′j , j = 1, 2, 3 will, for short, be united in the column

matrix uj = (u′j , u
′′
j )

T . In the zero approximation the desired functions
(0)
u j

denote averaged with respect to the width values

(0)
u j =

1
2h

1∫

−1

ujdx3 = (
(0)

u′ j ,
(0)

u′′j)T .

On the borders of the median surface of the plate the following conditions
are considered.

Symmetry conditions

(0)
u α = 0, ∂α

(0)
u 3−α = 0 xα = 0 xα = aα; (4.1)

Anti-symmetry conditions

(0)
u 3−α = 0, ∂α

(0)
u α = 0 xα = 0 xα = aα, α = 1, 2. (4.2)
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Problems are also considered when on some of the sides of the rectan-
gle symmetry conditions are defined while on the others - those of anti-
symmetry.

In the case of the N = 1 -th order approximation the statement of the

problem will have form (1.1)¡ (1.2) if the value
(k)
u j , j = 1, 2, 3, k = 0, 1

implies a column matrix

(k)
u j = (

(k)

u′ j ,
(k)

u′′j)T , j = 1, 2, 3; k = 0, 1.

The system of equilibrium equations in the case of the N = 0 -th order
approximation will have the form





A∆
(0)
u 1 + B∂1

(
∂1

(0)
u 1 + ∂2

(0)
u 2

)
+

(0)

F 1 = 0,

A∆
(0)
u 2 + B∂2

(
∂1

(0)
u 1 + ∂2

(0)
u 2

)
+

(0)

F 2 = 0,

(4.3)

where

A =
(

a1 c
c a2

)
, B =

(
b1 d
d b2

)
;

(0)

F α = (F ′
α, F ′′

α)T , α = 1, 2;

a1 = µ1 − λ5, b1 = µ1 + λ5 + λ1 − αρ2

ρ ,

a2 = µ2 − λ5, b2 = µ2 + λ5 + λ2 + α2ρ1

ρ ,

c = µ3 + λ5, d = µ3 + λ3 − λ5 − αρ1

ρ = µ3 + λ4 − λ5 + αρ2

ρ , α = λ3 − λ4,

λ1, λ2, λ3, λ4, λ5, µ1, µ2, µ3 are elastic constants; ρ1, ρ2 are densities
of the mix components, ρ = ρ1 + ρ2;

(0)

F α =
1
2h

h∫

−h

Φαdx3 +
1
2h

(
(+)
σ 3α −

(−)
σ 3α

)
, α = 1, 2.

Φα = (Φ′α,Φ′′α)T is a column matrix consisting of the components of vol-

umetric forces of two mix components,
(+)
σ 3α,

(−)
σ 3α are stresses defined on

two front surfaces and column matrices as well.
In the case under consideration, same as in the classical theory, equilib-

rium equations of the N = 1-th order approximation are divided into two
independent systems of stretching-compression and bend. They have the
following form:
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The system of stretching-compression equations [10]





A∆
(0)
u 1 + B∂1

(0)

θ +
1
h

Λ∂1
(1)
u 3 +

(0)

F 1 = 0,

A∆
(0)
u 2 + B∂2

(0)

θ +
1
h

Λ∂2
(1)
u 3 +

(0)

F 2 = 0,

A∆
(1)
u 3 − 3

h2
(A + B)

(1)
u 3 − 3

h
Λ

(0)

θ +
(1)

F 3 = 0;

(4.4)

the system of bend equations [10]





A∆
(1)
u 1 − 3

h2
A

(1)
u 1 + B∂1

(1)

θ −3
h

(B − Λ)∂1
(0)
u 3 +

(1)

F 1 = 0,

A∆
(1)
u 2 − 3

h2
A

(1)
u 2 + B∂2

(1)

θ −3
h

(B − Λ)∂2
(0)
u 3 +

(1)

F 2 = 0,

A∆
(0)
u 3 +

1
h

(B − Λ)
(1)

θ +
(0)

F 3 = 0,

(4.5)

where

(k)

θ = ∂1
(k)
u 1 + ∂2

(k)
u 2 =

(
(k)

θ′ ,
(k)

θ′′
)T

, k = 1, 2;

Λ =




λ1 − αρ2

ρ λ3 − αρ1

ρ

λ4 + αρ2

ρ λ2 + αρ1

ρ


 ,

(k)

F j = 2k+1
2h

h∫
−h

ΦjPk

(
x3
h

)
dx3 + 2k+1

2h

(
(+)
σ 3j − (−1)k

(−)
σ 3j

)
.

Each of the systems (4.4) and (4.5) consists of six equations with six
unknowns.

4.2. Solution of the stated problems. The solution of the boundary
value problems stated in 4.1 will be considered here taking as an example
the boundary value problem with anti-symmetry conditions on the sides of
a rectangle.

In the case of zero approximation of the function
(0)

F α, α = 1, 2 is ar-
ranged with respect to the corresponding trigonometric functions, in par-
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ticular,
(0)

F 1 =
∞∑

m=1

∞∑

n=1

F 1
mn cos

πmx1

a1
sin

πnx2

a2
,

(0)

F 2 =
∞∑

m=1

∞∑

n=1

F 2
mn sin

πmx1

a1
cos

πnx2

a2
,

(4.6)

where

F 1
mn =

(
F 1′

mn, F 1′′
mn

)T
, F 2

mn =
(
F 2′

mn, F 2′′
mn

)T
,

and the desired values
(0)
u 1,

(0)
u 2 are represented as the following series

(0)
u 1 =

∞∑

m=0

∞∑

n=1

amn cos
πmx1

a1
sin

πnx2

a2
,

(0)
u 2 =

∞∑

m=1

∞∑

n=0

bmn sin
πmx1

a1
cos

πnx2

a2
,

(4.7)

where amn and bmn are column matrices consisting of the desired Fourier
coefficients:

amn =
(
a′mn, a′′mn

)T
, bmn =

(
b′mn, b′′mn

)T
.

In the case of the N = 1-th order approximation we will have expressions
absolutely similar to those of (2.1) and (2.2) if the arranged functions and
coefficients imply column matrices consisting of the corresponding values
for two mix components.

Substituting expressions (4.6), (4.7) in equation system (4.3) and com-
paring the coefficients for similar trigonometric functions we have

a01 = b10 = 0;

for any fixed natural values of m and n we obtain the following system of
four equations with four unknowns





[
π2m2

a2
1

(A + B) +
π2n2

a2
2

A

]
amn +

π2mn

a1a2
Bbmn = F 1

mn,

π2mn

a1a2
Bamn +

[
π2n2

a2
2

(A + B) +
π2m2

a2
1

A

]
bmn = F 2

mn.

(4.8)
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In the case of the N = 1-th order approximation we have

(0)
a 01 =

a2
2

π2
A−1

(0)

F 01,
(0)

b 10 =
a2

1

π2
A−1

(0)

F 10,

(1)
a 01 =

a2
2h

2

π2h2 + 3a2
2

A−1
(1)

F 01,
(1)

b 10 =
a2

1h
2

π2h2 + 3a2
1

A−1
(1)

F 10.

For any fixed natural values of m and n we have the following systems
of equations.

In the case of stretching and compression we have




[
π2m2

a2
1

(A + B) + π2n2

a2
2

A
] (0)

a mn + π2mn
a1a2

B
(0)

b mn − 1
h

πm
a1

Λ
(1)
c mn =

(0)

F 1
mn,

π2mn
a1a2

B
(0)
a mn +

[
π2n2

a2
2

(A + B) + π2m2

a2
1

A
] (0)

b mn − 1
h

πn
a2

Λ
(1)
c mn =

(0)

F 2
mn,

− 3
h

πm
a1

Λ
(0)
a mn − 3

h
πn
a2

Λ
(0)

b mn

+
[
π2

(
m2

a2
1

+ n2

a2
2

)
A + 3

h2 (A + B)
] (1)

c mn =
(1)

F 3
mn .

(4.9)
In the case of bend we have





[(
π2m2

a2
1

+ π2n2

a2
2

+ 3
h2

)
A + π2m2

a2
1

B
] (1)

a mn + π2mn
a1a2

B
(1)

b mn

+ 3
h

πm
a1

(B − Λ)
(0)
c mn =

(1)

F 1
mn,

π2mn
a1a2

B
(1)
a mn +

[(
π2m2

a2
1

+ π2n2

a2
2

+ 3
h2

)
A + π2n2

a2
2

B
] (1)

b mn

+ 3
h

πn
a2

(B − Λ)
(0)
c mn =

(1)

F 2
mn,

1
h

πm
a1

(B − Λ)
(1)
a mn + 1

h
πn
a2

(B − Λ)
(1)

b mn + π2
(

m2

a2
1

+ n2

a2
2

)
A

(0)
c mn =

(0)

F 3
mn .

(4.10)
Let the matrices of the equation systems (4.8), (4.9) and (4.10) be

denoted by L1
mn, L2

mn, L3
mn, respectively. The fact that detLj

mn, j = 1, 2, 3
is non-zero follows from the corresponding uniqueness theorems.

As for the strongly sloping spherical and cylindrical shells, similar to
(3.1), (3.2), we can take the corresponding block matrices and study them.
We cannot afford it here due to the brevity requirements.
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